Energy Operator
Energy Operator :
- In Quantum Mechanics, Energy Is Defined In Terms Of The
Energy Operator
- In Quantum Mechanics, The Energy Operator Is A Mathematical
Operator Associated With Measuring The Energy Of A Quantum
System.
- It Is Represented By The Symbol "E" Or "Ê" And Is Often
Referred To As The Hamiltonian Operator.
- ψ(x,t) = Aei(kx-ωt)
(kx-ωt) Term
Multiplied & Divide By ħ
- ψ(x,t) = Aei(kx-ωt)
=
Aei(ħkx-ħωt)/ħ
= Aei(Px-Et)/ħ........(1) (ħk=P & ħω=E)
- Derivation To Eqaution (1) With Respect To Time
- ∂Ψ/∂t = Aei(Px-Et)/ħ - iE/ħ......(2)
-put value of ψ(x,t)
= Aei(Px-Et)/ħ in eqaution (2)
- ∂Ψ/∂t = - iE/ħ ψ
∂/∂t = - iE/ħ
E = - ħ/i ∂/∂t......(3)
Eqaution (3) Right Hand Side Multiplied & Divide By i
- E = - ħ/i ∂/∂t
= - iħ/i2
∂/∂t
- Ê = iħ ∂/∂t (i2=-1)
#QuantumEnergyOperators
#QuantumMechanics
#EnergyEigenvalues
#QuantumStates
#QuantumEnergySpectrum
#EnergyMeasurement
#QuantumHamiltonian
#EnergyEigenstates
#QuantumEnergyLevels
#QuantumOperatorAlgebra
#EnergyExpectationValue
#QuantumWavefunctions
#EnergySpectroscopy
#QuantumEnergies
#EnergyOperatorProperties
#QuantumEigenproblems
#EnergySpectrumAnalysis
#QuantumDynamics
#EnergyObservables
#QuantumEnergyTransitions